Digital microfluidics for time-resolved cytotoxicity studies on single non-adherent yeast cells.

نویسندگان

  • P T Kumar
  • K Vriens
  • M Cornaglia
  • M Gijs
  • T Kokalj
  • K Thevissen
  • A Geeraerd
  • B P A Cammue
  • R Puers
  • J Lammertyn
چکیده

Single cell analysis (SCA) has gained increased popularity for elucidating cellular heterogeneity at genomic, proteomic and cellular levels. Flow cytometry is considered as one of the most widely used techniques to characterize single cell responses; however, its inability to analyse cells with spatio-temporal resolution poses a major drawback. Here, we introduce a digital microfluidic (DMF) platform as a useful tool for conducting studies on isolated yeast cells in a high-throughput fashion. The reported system exhibits (i) a microwell array for trapping single non-adherent cells by shuttling a cell-containing droplet over the array, and allows (ii) implementation of high-throughput cytotoxicity assays with enhanced spatio-temporal resolution. The system was tested for five different concentrations of the antifungal drug Amphotericin B, and the cell responses were monitored over time by time lapse fluorescence microscopy. The DMF platform was validated by bulk experiments, which mimicked the DMF experimental design. A correlation analysis revealed that the results obtained on the DMF platform are not significantly different from those obtained in bulk; hence, the DMF platform can be used as a tool to perform SCA on non-adherent cells, with spatio-temporal resolution. In addition, no external forces, other than the physical forces generated by moving the droplet, were used to capture single cells, thereby avoiding cell damage. As such, the information on cellular behaviour during treatment could be obtained for every single cell over time making this platform noteworthy in the field of SCA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...

متن کامل

High-throughput tracking of single yeast cells in a microfluidic imaging matrix.

Time-lapse live cell imaging is a powerful tool for studying signaling network dynamics and complexity and is uniquely suited to single cell studies of response dynamics, noise, and heritable differences. Although conventional imaging formats have the temporal and spatial resolution needed for such studies, they do not provide the simultaneous advantages of cell tracking, experimental throughpu...

متن کامل

'Living cantilever arrays' for characterization of mass of single live cells in fluids.

The size of a cell is a fundamental physiological property and is closely regulated by various environmental and genetic factors. Optical or confocal microscopy can be used to measure the dimensions of adherent cells, and Coulter counter or flow cytometry (forward scattering light intensity) can be used to estimate the volume of single cells in a flow. Although these methods could be used to ob...

متن کامل

Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging.

We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at lambda = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavit...

متن کامل

Pumpless, selective docking of yeast cells inside a microfluidic channel induced by receding meniscus.

We present a simple cell docking method induced by receding meniscus to capture non-adherent yeast cells onto microwells inside a microfluidic channel. Microwells were fabricated either by capillary moulding of UV curable polyurethane acrylate (PUA) onto glass substrate or direct replica moulding of poly(dimethyl siloxane) (PDMS). A cell suspension of the budding yeast, Saccharomyces cerevisiae...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lab on a chip

دوره 15 8  شماره 

صفحات  -

تاریخ انتشار 2015